非负矩阵分解(NMF)相关论文
近年来基于非负矩阵分解(Nonnegative Matrix Factorization, NMF)的高光谱图像解混方法引起了大家的广泛关注。但是由于NMF问题的......
眼睛是人体重要的感觉器官之一,人类可以通过眼球运动向外界传达信息或与之交互。不仅如此,眼动的异常还是一些重要疾病的常见临床......
针对解决奇异值分解(Singular Value Decomposition,SVD)水印算法导致虚警率过高、对角线失真以及鲁棒性不强以及水印算法存在的安......
针对传统的约束非负矩阵分解方法对于解混的物理特性考虑较少,提出一种高光谱图像的解混方法:散射项约束非负矩阵分解(scattering-......
地震动作为一类典型的非平稳随机过程可由演变谱刻画其能量的时-频分布。然而,演变谱的时-频耦合特性却限制了经典谱表示法的模拟......
针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别问题,提出结合多源特征和高斯过程模型的方法。分别利用主成分分析(......
非负矩阵分解(NMF)是解决非独立源信号混合的盲分离的另一条新途径。该文提出一种基于约束NMF的盲源分离算法,在对NMF估计得到的源信......
在多标记研究中,对于标记间相关性的利用已经越来越广泛,从而标记关系的展示就很有必要。相对以往的研究而言,由于多标记数据的高维特......
在高光谱像元解混应用中,好的端元光谱矩阵初始化方法对于提高盲信号分解精度具有重要意义。针对空间分辨率较高的高光谱数据,提出......
针对非负矩阵分解中系数矩阵不够稀疏的问题,提出一个新的约束非负矩阵分解算法。在经典非负矩阵分解的优化函数中施加稀疏性约束,......
概念分解(CF)算法是一种有效的图像表示算法,目前已经广泛应用于维数约简、特征提取、数据挖掘等机器学习领域中。然而,传统CF算法......
为了尽可能地保留全色图像的空间信息和多光谱图像的光谱信息,提出了一种基于改进梯度投影非负矩阵分解和复Contourlet变换的遥感......
在处理数据特征提取问题时,已有的基于非负矩阵分解的不完整多视角聚类算法对局部特征的提取不够准确.针对此问题,文中提出基于正......
针对复杂网络社区发现问题,为了获得更准确、可解释性的社区划分结果,提出融合先验信息的半监督非负矩阵分解算法,给出优化目标的求解......
期刊
为了有效地实现图像Hash函数在图像认证检索中的应用,提出了结合Harris角点检测和非负矩阵分解(NMF)的图像Hash算法,首先提取图像......
提出一种结合图像融合的PCA与NMF相融合的人脸识别的识别方法。采用小波变换对图像进行处理,对于包含主要信息的低频子图用PCA进行......
非负矩阵分解(NMF)作为一种新的矩阵分解和特征提取方法,是大数据处理和模式识别中线性分离数据从而聚类的有效方法。提出了一种新......
在管道泄漏检测中,压力信号中的噪声干扰会降低传统互相关法的定位精度。传统的去噪算法对环境的适应性差,去噪效果不理想。为此,......
非负矩阵分解(NMF)是一种非常有效的数据降维方法,广泛应用于图像聚类等领域。然而NMF是一种无监督的方法,没有使用数据的标签信息......
为处理目标数据集仅有部分成对约束信息可用的半监督聚类场景,基于非负矩阵分解(NMF)架构,通过学习给定成对约束知识和运用流形正......
非负矩阵分解(non-negative matrix factorization,NMF)端元生成方法可以同时获得端元和丰度,且支持乘式迭代实现目标函数优化,处......
为了提高非负矩阵分解(NMF)算法识别率,提出了一种有监督的NMF(SNMF)方法。该算法对NMF基图像进行判别分析,然后选择主要反应类内......
提出一种融合局部相位量化(LPQ)和非负矩阵分解(NMF)进行人脸识别的方法.该方法首先采用LPQ算子提取分块人脸图像的LPQ直方图序列(......
由于基因表达谱数据的高噪声、高维性、高冗余以及数据分布不均匀等特点使得在分析过程中仍然有很多挑战性问题。基于该目的,将一......
混合像元的普遍存在成为影响高光谱图像精确识别的关键因素。由于传感器瞬间视场角大小、成像平台高度、成像视野内地物种类及分布......
提出了一种基于非负稀疏字典学习的图像修复算法,在非负矩阵分解(NMF)的目标函数中增加稀疏约束项,再通过稀疏编码和字典更新两步......
期刊
剪切波变换是一种新颖的多尺度几何分析工具,具有多分辨率、多方向性、效率较高等优点,比小波变换、曲波变换、轮廓波变换等图像表示......
期刊
人脸所反映的视觉信息在人与人的交流中有着重要的作用和意义,计算机人脸识别技术就是利用计算机分析人脸图像,从中提取有效的识别......
现有微博用户标签推荐方法大多依靠好友关系或内容进行推荐,并不能解决微博中存在的从众关系(噪音关系)及用户标签稀疏问题.因此,文......
期刊
稀疏正则化函数的选取直接影响到稀疏非负矩阵分解高光谱解混的效果。目前,主要采用L0或L1范数作为稀疏度量。L0稀疏性好,但求解困......
期刊
现有的非负矩阵分解方法直接在原始高维图像数据集上计算低维表示,同时存在对噪声数据、噪声标签、不可靠图敏感及鲁棒性较差的缺......
期刊
行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histog......
采用基于流形正则化非负矩阵分解(MR-NMF)的高光谱数据降维方法。新方法通过构建样本的近邻图描述数据几何结构,然后将其作为正则......
期刊